查看原文
其他

Zymeworks:占据半壁江山的ADC平台梳理

医药速览 BiG生物创新社
2024-10-13

图1. ADC通过不同途径杀伤癌细胞的机制概述


抗体偶联药物(Antibody-drug conjugates, ADC)是一类针对癌症的生物治疗药物,它结合了单克隆抗体(mAb)的靶向能力和细胞毒性药物(Payload,有效载荷)的抗癌能力。抗体和有效载荷通过连接子(Linker)进行连接,允许将特定药物递送至抗体靶向的癌细胞。ADC进入细胞后,连接的有效载荷被释放并杀死细胞(图1)[1]。虽然ADC旨在靶向并杀死肿瘤细胞,同时不伤害健康细胞,但第一代ADC平台存在一些局限性,导致ADC的治疗窗狭窄且对患者具有不可接受的毒性。

针对上述问题,本专题系列将总结归纳国内外知名企业应用的ADC技术平台。

前几期主要介绍了Synaffix、Mersana、Thiologics、Concortis、MediLink、KELUN、DualityBio和荣昌生物宜联/映恩/科伦博泰的ADC技术平台,今天将继续介绍一些公司的ADC技术:

作者:知乎_西山含黛

Making a Meaningful Difference

Zymeworks Inc.是位于温哥华的上市生物技术公司,成立于2003年,将蛋白质工程和药物化学领域行业领先的专业知识整合到其自身专有的多特异性抗体和ADC治疗模式中,并与疾病生物学相结合,开发主要用于治疗癌症以及自身免疫性疾病和炎症性疾病的新一代抗体疗法。经过20年的不断发展,目前该公司已拥有四项专利技术平台:Azymetric™[2],ZymeLink™[3],EFECT™[4]和ProTECT™[5] (图1);此外,原有的AlbuCORE[6]技术平台已在该公司官网上消失,未在相关项目中应用。

图1. Zymeworks技术平台简介[7]

Zymeworks根据自身或合作伙伴的需求,将四大技术平台融合使用,设计新型多功能抗体疗法,开发不同功能的ADC和多特异性抗体。在四大技术平台中,Azymetric™和ProTECT™ (PROgrammed Tumor Engagement & Checkpoint/Co‑stimulation Targeting)技术主要用于多特异性抗体的构建,Azymetric™技术已得到临床验证[8, 9];EFECT™ (Effector Function Enhancement and Control Technology)技术主要对抗体Fc进行工程化改造(氨基酸突变),对免疫细胞的功能进行调节。

图2. Zymeworks研发管线与其涉及的肿瘤免疫机制

ZymeLink™技术是Zymeworks的ADC技术平台,拥有专利授权的细胞毒性药物和Linker (可切割/不可切割)两大类,致力于开发高度差异化的ADC疗法。ZymeLink™平台可与多特异性抗体平台Azymetric™相结合,开发具有更高疗效的下一代ADC型双特异抗体(图2)[10, 11]。ZymeLink™技术平台[12]应用主要涵盖五大方面:ZymeLink™ Auristatin,TOPO1i ADC平台,ZymeLink™ Hemiasterlin,Cysteine-Insertion Conjugation (位点特异性偶联)和TLR7 ISAC (图3)。

图3. ZymeLink™技术平台


  01  


ZymeLink™ Auristatin技术平台

ZymeLink™ Auristatin是一种基于Auristatin的Drug Linker,利用N-酰基磺酰胺(Spacer)[13]将Auristatin与蛋白酶敏感的二肽接头相连接,可选择性地与半胱氨酸(Cys)或赖氨酸(Lys)偶联。ZymeLink™ Auristatin ADC与天然抗体非常相似,具有良好的药代动力学、耐受性和稳定性,减少有效载荷在血液循环中的过早释放,以最大限度地增加作用部位的有效载荷(ZD02044)[14]暴露。Zymeworks凭借该技术获得2019年世界ADC最佳平台技术奖冠军[15]

图4. 用于HER2 (+)的双特异性ADC (ZW49)可以提高疗效和治疗窗[11]

Zymeworks利用自身技术优势,以该公司已有的双特异性抗体ZW25 (Zanidatamab,phase Ⅲ)[16-18]为基础,将ZymeLink™和Azymetric™技术融合构建出双特异性ADC (ZW49,Zanidatamab Zovodotin,图4左上)[19]同时靶向两个不重叠的受体表位(HER2 ECD 2/4),增加的结合密度并诱导受体聚集,可导致高/低HER2表达肿瘤完全消退,提高治疗活性(图4右上);其毒理学实验表明ZW49对肝功和血细胞计数无影响;此外,与T-DM1和T-Exatecan相比,ZW49具有更优越的临床前疗效。与第一代ADC相比,其治疗窗口显著提高(图4下)[11, 20, 21]。Zymeworks和BeiGene合作开发ZW49,目前正在招募病人进行Ⅰ期临床试验(NCT03821233),评估其作为局部晚期或转移性HER2表达癌症患者的治疗效果[22]

  02  


TOPO1i ADC技术平台

Zymeworks TOPO1i(Topoisomerase 1 Inhibitor,拓扑异构酶1抑制剂) ADC技术平台使用该公司优化合成的喜树碱类(Camptothecins)有效载荷,以Trastuzumab (曲妥珠单抗)作为模式抗体对其链间二硫键进行偶联(图5左[23]),然后其与靶点结合、内化和溶酶体运输后分解代谢释放出ZD06519[24] (TOPO1i)。该技术平台具有以下优势[25, 26]:1) TOPO1i ADC即便在DAR值为8时也不会产生聚集,解决了TOPO1i类ADC容易聚集的问题;2) TOPO1i ADC具有较好的亲水性,具有强大的冻融稳定性以及光稳定性;3) TOPO1i ADC与行业领先的DXd平台相比,对于不同靶点均具有相似的疗效(图5中);4) TOPO1i ADC具有较强的旁观者效应(图5右)。

图5. TOPO1i类ADC具有良好的活性和旁观者效应

目前,Zymeworks利用TOPO1i ADC技术平台构建了三款ADC药物-ZW191、ZW251和ZW220,均由单特异性抗体构建。我将以表格的形式向大家介绍这三款ADC候选药物(表1)[18, 23]

表1. 基于TOPO1i ADC技术平台构建的ADC药物概述


  03  


ZymeLink™ Hemiasterlin技术平台

ZymeLink™ Hemiasterlin与ZymeLink™ Auristatin相似,都是采用N-酰基磺酰胺间隔区与可裂解二肽Linker将抗体与有效载荷进行偶联,得到具有足够的亲水性且DAR值为8的ADC,其内化后分解代谢释放出有旁观者效应的微管抑制剂ZD01886。该方法所构建的ADC具有良好的药代动力学、稳定性,避免有效载荷在血液循环中的过早释放,以最大限度地增加靶点部位的有效载荷暴露。

利用该技术平台,Zymeworks与Exelixis合作开发靶向于组织因子(Tissue Factor, TF)的ADC-XB002,用于实体瘤的治疗,目前已进入一期临床试验研究(NCT04925284)[27];此外,还与Atreca合作开发靶向于EPH受体A2 (EphA2)的ATRC-301,目前处于IND授权研究阶段[28, 29]

  04  


TLR7 ISAC技术平台

ISAC (Immune-Stimulating Antibody Conjugates,免疫刺激抗体偶联物)与ADC在结构上类似,通过Linker将免疫激动剂偶联到抗体的Fc上,目前用的多是TLR7/8激动剂[30, 31]或Sting激动剂[32, 33],但全身毒性和疗效的有限性阻碍了近期ISAC的临床开发。

Zymeworks以取代嘌呤骨架作为TLR7激动剂的先导化合物,设计合成220个结构多样性的小分子嘌呤衍生物,利用人、鼠的免疫细胞进行活性测试,选取最具希望的小分子引入可切割Linker构建MTvkPABC-P5小分子,通过马来酰亚胺基团与Trastuzumab上的内源性链间二硫键反应,得到DAR为4的ISAC (图6上),与Trastuzumab-MCvcPABC-MMAE偶联物(DAR4)相比,所构建的ISACs具有较低的聚集性和疏水性。将该类Trastuzumab-MTvkPABC-Pn (n为编号)与肿瘤细胞和原代免疫细胞共孵育,能够诱导高水平IL-6的表达;在N87异种移植模型中,部分Trastuzumab-MTvkPABC-Pn抑瘤活性与临床评估的Trastuzumab-NJH395 (NCT03696771)[34]相当,其中Trastuzumab-MTvkPABC-P5和Trastuzumab-ME2-P1的抗癌活性更优(图6左下);同时,Balb/c小鼠的耐受性实验表明Trastuzumab-MTvkPABC-P5具有显著的耐受性优势(图6右下)[35]

图6. 基于嘌呤骨架的TLR7激动剂作为ISAC有效载荷的研究


  05  


Cysteine-Insertion Conjugation技术平台

Zymeworks通过计算机建模评估不同的半胱氨酸(Cys)插入位点对IgG结构和功能的影响,确定最优的Cys插入位点,选择性地与任何巯基反应性药物偶联,利用简单的化学反应构建均质ADC (图7上),与该公司的专利技术Azymetric™技术[2]配套使用时,可以根据Cys插入个数精确控制DAR值(1、3、4和6,图7下);与Cys随机偶联构建的ADC相比,该技术平台构建的ADC表现出更优的生物物理性质[36, 37]。Zymeworks开发的这种Cys定点偶联技术和Genentech公司早期开发的ThioMab技术[38]有些许相似之处,得益于自身平台技术的整合,使其拥有更大的应用空间。

图7. Cysteine-Insertion Conjugation技术平台

以上内容便是占据Zymeworks公司技术平台半壁江山的ADC技术平台。

除了前边提及的BeiGene、Exelixis和Atreca,该公司目前还与Jazz Pharmaceuticals、Bristol Myers Squibb、Johnson & Johnson、Merck、Daiichi-Sankyo、GSK和LEO Pharma等多家公司开展合作,开发多特异性抗体和ADC类药物[18]

 主要参考文献 

1. Fu, Z., et al., Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther, 2022. 7(1): p. 93.

2. https://www.zymeworks.com/technologies/azymetric/.

3. https://www.zymeworks.com/technologies/zymelink-auristatin/.

4. https://www.zymeworks.com/technologies/efect/.

5. https://www.zymeworks.com/technologies/protect/.

6. Sanches, M., et al., AlbuCORE: an albumin-based molecular scaffold for multivalent biologics design. MAbs, 2020. 12(1): p. 1802188.

7. https://www.zymeworks.com/technology/.

8. Bedard, P.L., et al., Zanidatamab (ZW25), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) for HER2-positive breast cancer (BC): Results from a phase 1 study. CANCER RESEARCH, 2022. 82(4).

9. Pant, S., et al., A phase IIb, open-label, single-arm study of zanidatamab (ZW25) monotherapy in subjects with advanced or metastatic HER2-amplified biliary tract cancers. JOURNAL OF CLINICAL ONCOLOGY, 2021. 39(3).

10. Hamblett, K.J., et al., ZW49, a HER2-targeted biparatopic antibody-drug conjugate for the treatment of HER2-expressing cancers. Cancer Research, 2018. 78(13_Supplement): p. 3914-3914.

11. Tehrani, A., et al., Zymeworks’ 2018 R&D Briefing. 2018. p. 132.

12. Barnscher, S., et al., Zymelink drug conjugate platform: redefining the therapeutic window for ADCs. Cancer Research, 2017. 77(13_Supplement): p. 61-61.

13. Winters, G.C., et al., Preparation of cytotoxic and antimitotic peptide-based compounds conjugated to antibodies for treating cancers. 2016, Centre for Drug Research and Development, Can.; Zymeworks Inc. . p. 122 pp.

14. Tolcher, A., et al., A dose-escalation and expansion study of the safety and pharmacokinetics of XB002 in subjects with inoperable locally advanced or metastatic solid tumors (301). Gynecologic Oncology, 2022. 166: p. S158.

15.https://www.adcreview.com/news/zymeworks-wins-best-adc-platform-technology-award-for-zymelink/.

16. Bedard, P.L., et al., Abstract P2-13-07: Zanidatamab (ZW25), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) for HER2-positive breast cancer (BC): Results from a phase 1 study. Cancer Research, 2022. 82(4_Supplement): p. P2-13-07-P2-13-07.

17. https://www.clinicaltrials.gov/ct2/results?cond=zw25&term=&cntry=&state=&city=&dist=.

18. https://www.zymeworks.com/pipeline/.

19. Jhaveri, K., et al., 460MO Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Annals of Oncology, 2022. 33: p. S749-S750.

20. Colombo, R. and J.R. Rich, The therapeutic window of antibody drug conjugates: A dogma in need of revision. Cancer Cell, 2022. 40(11): p. 1255-1263.

21. https://seekingalpha.com/article/4227658-zymeworks-inc-blockbuster-in-making.

22. Barnscher, S., Design and Functional Characterization of Zanidatamab Zovodotin (ZW49), a HER2-targeting Biparatopic Antibody Drug Conjugate in Clinical Development. February 23, 2023: European Bispecific & Multispecific Antibody Congress.

23. Lawn, S., ZW191 – A FRa-Targeted ADC Employing Zymework’s TOPO1-Inhibitor Platform. March 16, 2023: World ADC London 2023.

24. https://www.zymeworks.com/technologies/topo1i-platform/.

25. TOPO1i ADC Platform: From Concept to Pipeline. March 2022: World ADC London 2022.

26. Petersen, M., et al., Zymeworks Topoisomerase 1 Inhibitor ADC Platform: From Concept to Pipeline. September 9, 2022: World ADC San Diego.

27. Johnson, M., et al., Abstract CT254: A first-in-human phase 1 study of the safety and pharmacokinetics of XB002 in patients with inoperable locally advanced or metastatic solid tumors. Cancer Research, 2022. 82(12_Supplement): p. CT254-CT254.

28. DeVorkin, L., et al., 1196 Streamlining T cell engager development with a diverse panel of fully human CD3-binding antibodies, bispecific engineering technology, and an integrated discovery engine. 2022, BMJ Specialist Journals.

29. Marguet, P., et al., ATRC-301: a novel EphA2-targeting ADC binding a unique epitope. 2022: World ADC Conference 2022.

30. Ackerman, S.E., et al., TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation leading to enhanced effector function and anti-tumor immunity in pre-clinical models. Cancer Research, 2019. 79(13_Supplement): p. 1559-1559.

31. He, L., et al., Immune Modulating Antibody-Drug Conjugate (IM-ADC) for Cancer Immunotherapy. J Med Chem, 2021. 64(21): p. 15716-15726.

32. Diamond, J.R., et al., Abstract CT249: First-in-human study of TAK-500, a novel STING agonist immune stimulating antibody conjugate (ISAC), alone and in combination with pembrolizumab in patients with select advanced solid tumors. Cancer Research, 2022. 82(12_Supplement): p. CT249-CT249.

33. Duvall, J.R., et al., XMT-2056, a HER2-targeted Immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity in combination with trastuzumab and pertuzumab. Cancer Research, 2022. 82(12_Supplement): p. 3503-3503.

34. Janku, F., et al., Preclinical Characterization and Phase I Study of an Anti-HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol Res, 2022. 10(12): p. 1441-1461.

35. Garnett, G., et al., 1185 Optimization of purine-based TLR7 agonists as payloads for immune-stimulating antibody conjugates (ISACs). 2022, BMJ Specialist Journals.

36. Das, S., et al., Novel IgG1 Cysteine Insertion Sites Enable Site-Specific Conjugation and Precise Control of Drug to Antibody Ratio, in Antibody Engineering & Therapeutics Conference. December 5, 2022.

37. https://www.zymeworks.com/technologies/site-specific-conjugation-platform/.

38. Junutula, J.R., et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 2008. 26(8): p. 925-32.



  相关推荐  


5月19-20日,上海;开疆拓土,智药新潮 |BiG双峰会




参会报名

/ 扫描下方二维码,立即报名 /


BiG伙伴票(粉丝福利):免费参会(审核制),既往3年内参与任何一次BiG会议者即为BiG伙伴,席位有限,优先开放给新药研发、临床、院校PI

如何加入会员?

继续滑动看下一个
BiG生物创新社
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存